
Programming 1

Laszlo SZATHMARY
University of Debrecen
 Faculty of Informatics

2023-2024, 2nd semester

Lecture #8
• modules
• random numbers

(last update: 2024-01-31 [yyyy-mm-dd])

Modules

2

As our program gets longer, the need arises to cut it into several source files.

First, maintenance would be easier. The project would be clearer, simpler.

Second, we might want to reuse some useful functions in different programs, without
copying the functions to every program.

Exercise:

Write two programs:

1.Print prime numbers that are less than 100 (ex1.py)

2.Print the sum of prime numbers that are less than 200 (ex2.py)

Link: https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20121110a

https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20121110a

3

When ready, let’s investigate what is common in the two scripts. The common part is the

is_prime() function.

1. the very same function is repeated at different places

2. the is_prime() function performs an operation that could be useful in the future in
another project

ex1.py ex2.py

def is_prime(n):
 …

pylab.py

def is_prime(n):
 …

ex1.py

ex2.py

Move the common
function to a module
 (e.g. pylab.py), and
import this module in the
scripts.

def is_prime(n):
 …

import pylab

…

import pylab

…

4

pylab.py Usage (ex3.py):

import pylab # without ‘.py’

()

()

5

Variations

import pylab

It won’t put the functions defined in pylab to the current
symbol table. Only the name of the module (pylab) is put in
the symbol table.
If you want to use the module’s functions, then refer to them
using the module’s name:
pylab.is_prime(n)

import pylab as pl

If the module has a long name and/or we want to refer
to it several times, then you can rename it by putting an
alias on it. Then:
pl.is_prime(n)

6

Variations (cont.)

from pylab import is_prime

Meaning: from the pylab module we import just the function name is_prime to the
symbol table.
!!! It doesn’t bring in the module’s name to the symbol table !!!
Ex.: print(pylab.hello()) # error, the symbol „pylab” is unknown

Solution:

1. from pylab import is_prime, hello

2. from pylab import is_prime

import pylab

3. from pylab import *
Not recommended, since we won’t know what is imported
from where. It just causes a mass.

7

Before:

Testing a module
After:

docstring

test

#!/usr/bin/env python3

()

8

Testing a module (cont.)

arbitrary
tests

The condition (line 40) is true, if the module is executed directly from the command-
line (i.e. ./pylab.py). In this case the test will run.

If the module is imported, then the condition is false, thus the test won’t run.

That is: if we write a module, then (1) it can be used as a module, and (2) it can also
be used as a stand-alone script!

Exercise: Modify the pylab.py module the followinf way. If it’s executed directly,
then it should read a number from the standard input, and then it should print
whether this number is a prime or not.
Then execute the ex1.py script, in which import this modified pylab.py module.
What do you notice?

()

9

pylab.py ex1.py

Testing a module (cont.)

3 3

()

()
()

10

Testing a module (cont.)

Another advantage:

If you add tests to the end of your module, then you provide some concrete
examples about the usage of your module. If somebody wants to use your module,
(s)he will get some examples in the form of your tests.

„Alice: - I wrote a cool module that I just sent to you in email. Did you
 get it?
Bob: - Yeah, but… How can I use these functions?
Alice: - Go down to the bottom. There you will see some examples.
Bob: - Oh, OK. Cool! Thanks!”

()

11

Modules

pylab.py

def is_prime(n):
 …

ex1.py

ex2.py

Another advantage of using modules

If you modify a function, then you need to do it at one place only.

Exercise: In the pylab.py module replace the implementation of the is_prime()
function to the much more efficient Miller-Rabin test.
You will find the source code of the MR test in the course material.

Then run the scripts ex1.py and ex2.py . What do you notice?

http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test

12

How a module is imported

import spam

We want to import this module. How will the
interpreter find it? From where will it be imported?

1) The unterpreter checks if it’s a built-in module.
Built-in module: compiled in the interpreter.

2) If it’s not found, then it’ll look for a file called spam.py in a list of directories. This
list of directories can be found in sys.path .

This sys.path is initialized the following way:
• the folder containing the script
• The PYTHONPATH environment variable. It is similar to PATH : a colon-

separated list of directories.
• system folders specific to your Python installation

13

How a module is imported (cont.)

sys.path is a normal list => after the initialization, you can also modify it in your
script

!!! The folder containing the current script will be at the beginning of sys.path , i.e.
it comes before the folders of the standard library. It can cause some strange errors if
the folder contains some files whose names are identical to the names of some
modules in the standard library !!!

14

Random numbers https://docs.python.org/3/library/random.html

[0.0, 1.0)

lower <= N <= upper

mixes (shuffles) the
elements in place
(random permutation)

selecting a random
element from the list

Exercise: the shuffle method modifies the list in place. Write a function
called shuffled that returns the shuffled list, allowing us to do the following
for instance: n = shuffled(li)[-1]

https://docs.python.org/3/library/random.html

Exercises

1. [20121110a] modules

2. [20120905c] shuffled

3. Implement the queue and stack data structures with classes.
Document everything with docstrings: the module, the class, and the
class’ functions.

15

homework

https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20121110a
https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20120905c

