jexe

™ python L

Scripting Languages

Lab #7

* classes, objects

(last update: 2023-02-06 [yyyy-mm-dd])

OO programming in Python
In Python you can program in a procedural, or in an OO way.
You can choose which one to use: either this or that, or even both.

We have already used Python classes, e.g. str (string class).

name
print(name.capitalize())

Now let’s see how to define own classes, and how to instantiate objects from
these classes.

OO programming in Python (cont.)

All standard OO features can be found in Python. For instance:
 multiple inheritance
e asubclass can override any method of its superclass

It’s a dynamic language, thus classes are created during runtime, and once they are
created, they can be modified!

All instance variables and instance methods are public.
All instance methods are virtual.

Most built-in operators can be overloaded (redefined) and then they can be used with
the objects.

Passing an object as a parameter is cheap, since their addresses are passed (as a
reference). Consequence: if we modify an object that we got via parameter passing,
then the caller will also see the changes.

classes

NameOfClass

class EmptyClass:

pass

class MyClass:
def hello()
return "hello world

def main():
obj = MyClass()
print(obj.hello())

every class is a subclass of
the “object” class (no need
to indicate that in Python 3)

instance method

the first parameter must be
"self” but we don’t write it
when calling the method

instantiation
(creating an object)

classes (instance variable, instance method) e

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

class Hello:

def

instance method

A class for greeting the user. ‘_—————”’///

def create name(self, name): €
selfT.name = name € —_—

instance variable

def display name(self):
return self.name

def greet(self):
print("Hello {0}!".format(self.name))

main() :

h = Hello()

h.create name(Alice’)

print(h.display name()) Alice
h.greet() Hello Alice!

print(h.name)

- 2> everything is public

self

The first parameter of every instance method must be “self”.
This is equivalent to Java’s “this”, i.e. it’s a reference that points to the
current object. By convention it’s called “self”. Don’t change its name!

Every (non-static) function’s first parameter is “self”, but don’t indicate this
when you call the function!

Python’s dynamic nature allows us to to create an instance variable in any
function, and then this variable exists from that point on.

classes (init)

3 class Greetings:

4

5 def init (self, name):
b selT.name = name

} def say hi(self):

g print ("Hi {0}!".format(self.name))
10

11

12 def main():

13 g = Greetings(Alice")

14 g.say hif()

The constructor automatically callsthe init () method.
Technically, init () is not the constructor, but it’s very close to it.
It will initialize the object.

classes (calling an instance method)

3 class Bag: container class

4 (its instances store data)

5 det init (self):

6 self.data = []

I

8 def add(self, wvalue):

9 self.data.append(value)
10

11 def add twice(self, value):
12 self.add(value)
13 self.add(value)
14 .
15 def __str_ (self): g | special method
16 return str(self.data) (produces a readable
17 representation of the object)
18
ig def main(): see also: Java’s toString ()
2 b = Bag()
2 b.add(5)
22 print(b) L . ,
53 b.add(3) Try it without the special method too!
24 print(b)
25 b.add twice(9)
26 print(b)

classes (record)

Sometimes it’d be nice to have a record type, similar to C’s struct. It can be done:

5 class Employee:

4 pass

5

6 def main():

7 john = Employee()

8 john.name = "John Doe
g john.dept = "IT

10 john.salary = 1000

11

12 print(john.dept)

Another method: use a dictionary
Jjohn = {}
John["name’] = "“John Doe”

private variable and methods

Private variables/methods that are not accessible from outside just inside the
object: they don’t exist in Python. Everything is public.

However, there is a convention (again): if the name of a variable/method
starts with _ (underscore), then it must be treated as if it were non-public.
Example: spam.

accessors (getters / setters)

Not needed, everything is public.

Once Guido was asked why there are no private variables/methods.
Guido’s answer: "We are all adults.” :)

accessors (getters / setters)

Java style

class Rectangle:
def __init__ (self, width, height):
self. width = width
self._height = height

def get width(self):
return self. width

def set_width(self, new_width):
self. width = new width

def get_height(self):
return self._height

def set height(self, new height):
self._height = new_height

def area(self):
return self. width * self._height

Python style

class Rectangle:
def init (self, width, height):
self.width = width
self.height = height

def area(self):
return self.width * self.height

def main():
rect = Rectangle(50, 10)
rect.set width(60)
print(rect.area())

def main():
rect = Rectangle(50, 10)
rect.width = 60
print(rect.area())

Exercise: extend this source

print (rect) # should produce this output:
-> "Rectangle(60, 10)”

11

special methods

Their names start and end with (double underscore, “"dunder”).
We have already seen some:
. init

o sStr

There are several other special methods, see

destructor

Doesn’t exist. The garbage collector will delete the object.
However, we don’t know exactly when this happens.

https://rszalski.github.io/magicmethods/

class variables

class variable
(it was defined in the class,
but outside of the class’

methods)
8 class MyClass:
9 i= 12345 —
10
11 def hello(self):
12 print("hello")
13
14 how to get its value
15 def main(): (_/
16 print(MyClass.1i)
17
18 mc = MyClass()
19 mc.hello()
20 print(mc.i) <
Exercise:

Write a class that counts how many times it was instantiated
(how many objects were created from it).

13

class methods (1st way)

Write a Balloon class, that represents colored balloons. Keep track of the number
of the different colors of the balloons too. (For instance, if we have 2 red, 1 white,
and 5 green balloons, then the number of different colors is three.)

class variable

3 class Balloon:
- unique colors = set()
L-:I

def init (self, color):
self.color = color
Balloon.unique colors.add(color)

w decorator
10 @staticmethod

11 def unique color count(): class method
12 return len(Balloon.unique colors)

13

14 Notice that the function has
15 def main(): NO extra parameter!
16 a = Balloon("red")

17 b = Balloon("green")

18 c = Balloon(" 'green")

19 d = Balloon('white")

20 print(Balloon.unique color count())

This static function could also be outside the class.
We put it in the class because logically it belongs there.

class methods (2nd way)

class Balloon: class variable
unigque colors = set()

def init ,) !
self.color = color
Balloon.unique colors.add(color)

@classmethod decorator
def unique color count() class method
return len(Balloon.unique colors)
The “cls” parameter represents the class itself. NOtiC? that the
We don’t write it either when calling the function. function HAS an extra

parameter (c1s)!

Use this 2nd way when you want to refer to the current class in the function.
It can be necessary upon inheritance.

inheritance, multiple inheritance

Python supports multiple inheritance. However, it’s better to avoid it (see
). It was also removed from Java...

https://en.wikipedia.org/wiki/Multiple_inheritance

12
13
14
15

from enum import Enum

class Direction(Enum):

Uup =1 Q“\
RIGHT = 2

DOWN = 3

LEFT = 4

def main():
print(Direction.UP)
print(type(Direction.UP))
print(Direction.UP.name)

print(Direction.UP.value)

class variables

Direction.UP
<enum 'Direction'>
"UP" (str)

1 (int)

17

from enum import Enum, auto

class Direction(Enum): qg\
UP = auto()
RIGHT = auto()
DOWN = auto()
LEFT = auto()

def main():

12 print(Direction.UP) # Direction.UP

13 print(type(Direction.UP)) # <enum 'Direction'=
14 print(Direction.UP.name) # "UP" (str)

15 print(Direction.UP.value) # 1 (int) 4—’—-

18

[: homework

Exercises

[201303252] classes (queue with two stacks)

E [201411252] classes (stack)
2.

https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20141125a
https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20130325a

