
Scripting Languages

Laszlo SZATHMARY
University of Debrecen
 Faculty of Informatics

2022-2023, 2nd semester

Lab #7
• classes, objects

(last update: 2023-02-06 [yyyy-mm-dd])

2

OO programming in Python

In Python you can program in a procedural, or in an OO way.
You can choose which one to use: either this or that, or even both.

We have already used Python classes, e.g. str (string class).

Now let’s see how to define own classes, and how to instantiate objects from
these classes.

()

3

OO programming in Python (cont.)

All standard OO features can be found in Python. For instance:

• multiple inheritance

• a subclass can override any method of its superclass

It’s a dynamic language, thus classes are created during runtime, and once they are
created, they can be modified!

All instance variables and instance methods are public.

All instance methods are virtual.

Most built-in operators can be overloaded (redefined) and then they can be used with
the objects.

Passing an object as a parameter is cheap, since their addresses are passed (as a
reference). Consequence: if we modify an object that we got via parameter passing,
then the caller will also see the changes.

()

:

:

4

classes

NameOfClass
every class is a subclass of
the ”object” class (no need
to indicate that in Python 3)

instance method
the first parameter must be
”self”, but we don’t write it
when calling the method

instantiation
(creating an object)

5

classes (instance variable, instance method) docstring

instance method

instance variable

everything is public

:

()

()

()

6

self

The first parameter of every instance method must be ”self”.
This is equivalent to Java’s ”this”, i.e. it’s a reference that points to the
current object. By convention it’s called ”self”. Don’t change its name!

Every (non-static) function’s first parameter is ”self”, but don’t indicate this
when you call the function!

Python’s dynamic nature allows us to to create an instance variable in any
function, and then this variable exists from that point on.

7

classes (init)

The constructor automatically calls the __init__() method.
Technically, __init__() is not the constructor, but it’s very close to it.
It will initialize the object.

()

:

8

classes (calling an instance method)

container class
(its instances store data)

special method
(produces a readable

representation of the object)

Try it without the special method too!

see also: Java’s toString()

()

()

()

:

9

classes (record)

Sometimes it’d be nice to have a record type, similar to C’s struct. It can be done:

Another method: use a dictionary
john = {}

john[’name’] = ”John Doe”

…

()

:

10

private variable and methods

Private variables/methods that are not accessible from outside just inside the
object: they don’t exist in Python. Everything is public.

However, there is a convention (again): if the name of a variable/method
starts with _ (underscore), then it must be treated as if it were non-public.
Example: _spam .

accessors (getters / setters)

Not needed, everything is public.

Once Guido was asked why there are no private variables/methods.
Guido’s answer: ”We are all adults.” :)

11

accessors (getters / setters)

Java style Python style

Exercise: extend this source

print(rect) # should produce this output:

-> ”Rectangle(60, 10)”

()

:

12

special methods

Their names start and end with __ (double underscore, ”dunder”).
We have already seen some:
• __init__
• __str__

There are several other special methods, see
https://rszalski.github.io/magicmethods/ .

destructor

Doesn’t exist. The garbage collector will delete the object.
However, we don’t know exactly when this happens.

https://rszalski.github.io/magicmethods/

13

class variables
class variable

(it was defined in the class,
but outside of the class’

methods)

how to get its value

Exercise:

Write a class that counts how many times it was instantiated
(how many objects were created from it).

()

()

()

:

14

class methods (1st way)

Write a Balloon class, that represents colored balloons. Keep track of the number
of the different colors of the balloons too. (For instance, if we have 2 red, 1 white,
and 5 green balloons, then the number of different colors is three.)

class variable

decorator

class method

Notice that the function has
NO extra parameter!

This static function could also be outside the class.
We put it in the class because logically it belongs there.

:

()

15

class methods (2nd way)

class variable

decorator

class method

Notice that the
function HAS an extra
parameter (cls)!

The ”cls” parameter represents the class itself.
We don’t write it either when calling the function.

Use this 2nd way when you want to refer to the current class in the function.
It can be necessary upon inheritance.

:

16

inheritance, multiple inheritance

Python supports multiple inheritance. However, it’s better to avoid it (see
diamond problem). It was also removed from Java…

https://en.wikipedia.org/wiki/Multiple_inheritance

17

Enum

Enumeration type.

class variables

18

Enum (cont.)

Enumeration type.

Exercises

1. [20141125a] classes (stack)

2. [20130325a] classes (queue with two stacks)

19

homework

https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20141125a
https://arato.inf.unideb.hu/szathmary.laszlo/pmwiki/index.php?n=EnPy3.20130325a

